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Note 

A Remark on the Application of Closed and 
Semi-closed Quadrature Rules to the Direct Numerical Solution 

of Singular Integral Equations 

The direct quadrature method of numerical solution of singular integral equations with 
Cauchy-type kernels is modified so as to become applicable to the cases when closed and 
semi-closed quadrature rules are used, the index of the integral equation is equal to zero, and 
the number of collocation points is less, by one, than the number of nodes used in the 
quadrature rules. The proposed modification consists in using a theoretically determined 
condition, not involving principal value integrals. Numerical applications are also made. 

1. PRELIMINARY CONSIDERATIONS 

The direct quadrature method of numerical solution of singular integral equations 
with Cauchy-type kernels (called simply singular integral equations in what follows) 
consists in the application of a quadrature rule for the approximation to the integrals 
of the singular integral equation followed by the reduction of the resulting approx- 
imate equation to a system of linear equations by applying this equation at a set of 
appropriately selected collocation points. Erdogan et al. [I] considered the solution 
of singular integral equations of the first kind by a direct method, whereas Krenk [2] 
generalized the results of Ref. [l] to the case of singular integral equations of the 
second kind but with constant coefficients. Further results on this method were 
obtained by Ioakimidis [3] and reported in a series of papers by Ioakimidis and 
Theocaris, the most general of which is Ref. [4]. 

Here we will confine ourselves to singular integral equations of the first kind of the 
form 

W, x)dW = f(x), -l<x<l, 

where k(t, x) and f(x) are known functions, whereas p(t) is the unknown function to 
be determined. It is well known that the unknown function v(t) behaves like [ 1,5] 
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wkere w(t) is a weight function of the form 

o(t) = (1 - t)“(l + r)“, ceYk$, p==dz+ (3) 

and g (1) is a regular function if k(t, x) and f(x) are assumed also to be regular 
functions. For the numerical solution of Eq. (1) we can use an appropriate ~~rne~~c~~ 
integration rule of the form 

i 
l co(t)g(t)dt N t A,g(tJ (Gab) 
-1 i= 1 

with n nodes ii and weights A i, and reduce Eq. (1) to the system of linear algebraic 
equations 

where g”(tJ are the approximate values of g(t) at the nodes t, used, 

u=-((a 4P) ($1 

is the index of Eq. (1) ]5] , restricted in practical problems to the values IC = t and 
K = 0, and xk are appropriate collocation points selected in such a way that Eq, (4) 
holds true for Gauchy-type principal value integrals too [l-4]. 

From Eqs. (5) we observe that, although in the case when K = 0 the n~rnb~r of 
these equations is equal to the number of unknowns g”(tJ, yet this does not hold true 
if K = 1. In this case, a collocation point is missing. But the theoretical results of 
Muskhel~shvili [5] show that in this case Eq. (1) does not have a unique solution 
unless supplemented by an additional condition of the form 

J 
1 

1 &)dt = 
i 

w(t)g(t)dt = @, (7) 
-1 -1 

where C is a known constant. Then the application of Eq. (4) to Eq. (7) yields 

and Eqs. (5) and (8) are equal in number to the unknowns g(tJ (i = l(l)n). 
This ideal situation disappears if Eq. (4) is a semi-closed or closed quadrature rule; 

that is, a rule in which one or two nodes ti (i = 1 and/or i = n) coincide with the end- 
points t = i 1 of the integration interval I-1, I]. Such rules were applied to the 
numerical solution of singular integral equations for the first time by ~o~irn~d~s [I31 
and considered in detail in Refs. 17-101. The main reason favoring the use of these 
rules is that, in this way, the determination of the values of the unknown function p (t) 
at the end-points t = i 1 of the integration interval [-I, I] is achieved directly from 
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the solution of Eqs. (5) (supplemented by Eq. (8) if K = 1) without using 
extrapolation techniques. These values are of particular interest in some physical 
problems. In fact, Eq. (1) appears in several physical problems, like solid mechanics 
problems (crack problems, contact problems, dislocations problems, etc.) [ 1, 31, as 
well as fluid mechanics problems (problems of hydrodynamics and aerodynamics, 
etc.) [6, 12, 131. In fluid mechanics problems, the collocation method (permitting the 
determination of g&l)) based on Jacobi polynomials has been generally used [6] 
instead of the quadrature method [l-4, 7-101, which is used here too. 

Unfortunately, the results of Ref. [8] make it clear that the number of collocation 
points is equal to (n - 1) if we use Lobatto-Jacobi quadrature rules for singular 
integral equations. Of course, if IC = 1, then Eq. (8) supplements Eqs. (5) and a 
system of IZ linear algebraic equations results. But if IC = 0, as happens in a series of 
physical problems (like most problems of flow of fluids [6, 12, 131 or problems 
associated with dislocations arrays or even contact problems in the theory of 
elasticity [ 1, 3 I), then, evidently, Eq. (1) cannot be solved by using the Lobatto-- 
Jacobi quadrature rules. Similar results also hold true in several cases (but not 
always) when using Radau-Jacobi quadrature rules [8] associated with the weight 
function o(t). It can be said that closed quadrature rules generally provide only 
(n - 1) collocation points, whereas semi-closed quadrature rules provide (IZ - 1) 
collocation points (when IC = 0) in about half of the cases. 

Up to now no remedy has been found for this unfortunate situation when IC = 0. 
Krenk [lo] suggested that a and /I in Eqs. (3) be always restricted to taking negative 
values (that is reduced by 1 if they result positive from the physical problem under 
consideration). In this case, the index IC results from Eq. (6) in being equal to 1 and 
the additional condition 

g(l)=0 or g(-I)=0 (9) 

is now available and substitutes Eq. (7). But, obviously, Eqs. (9) say that the node 
t = 1 or t = -1 does not exist anymore in Eq. (4) since we have replaced g(t) by 
(1 - t)g(t) or (1 + t)g(t) when reducing (r or ,!I by 1 and using one of Eqs. (9). 
Hence, the values g(l) or g (-1) of the original function g (t) will not be determined 
by this procedure and the conditions (9) for the new functions having replaced g(t). 
Here we will propose a new technique for the solution of Eq. (1) in all cases by using 
closed or semi-closed quadrature rules with ic = 0. 

2. THE PROPOSED TECHNIQUE 

We will illustrate the proposed technique in the case when a = + ; and ,f? = - 4 in 
Eqs. (3). Then the index IC of Eq. (1) results from Eq. (6) in being equal to 0. 
Following the previous developments, we assume CL is replaced by 

y=a-l=-; (10) 
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and o(t) by 

w(t) = (1 - t)Y(l + t)4 = (1 - e)- “w(r) (1 I) 

with w(t) given by Eq. (3). Then Eq. (2) will take the form 

where h(t) is a new unknown function, related to g(t) by 

h(t) = (1 - t)gtt) 

as is clear from Eqs. (2), (11) and (12). Evidently, h(t) satisfies the condition 

h( 1) = 0. (14) 

Now we take into account that Eq. (1) is equivalent to the following ~~ed~olrn 
integral equation of the second kind [5,6]: 

where the constant C is related to h(t) by the condition 

J l w(t) h(t) dt = C, (16) 
-1 

analogous to Eq. (7). To satisfy Eq. (14), we apply Eq. (15) at t= 1 and we find 

(17) 

taking also into account Eqs. (1 l), (13), (14) and (16). This is a condition for the 
original function g(t) and, like Eq. (7), it does not contain Cauchy-type principal 
value integrals. This condition provides the last linear algebraic eq~~t~~~ to 
supplement Eqs. (5) if K = 0 and a collocation point is missing due to the a~~li~ati~~ 
of a closed or, sometimes, a semi-closed quadrature rule of the form (4). 

If we put 
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and apply Eq. (4) to Eq. (17), we obtain 

(19) 

Equation (19) is analogous to Eq. (8) obtained in the case when IC = 1. Finally, as 
regards the evaluation of K(t) and F, this can easily be achieved by using an 
appropriate numerical integration rule with a sufficiently large number of nodes 
m [ll]. 

It can also be mentioned that quite similar results are obtained if we assume that 
a = - f and fi = + 4 (so that IC = 0 again) in Eq. (1). The generalization of the 
present results to singular integral equations of the second kind [Z, 8, lo] is trivial on 
the basis of the above developments. 

3. NUMERICAL APPLICATIONS 

As an application we consider again Eq. (1) with w(t) given by Eq. (3) with 
a = + i and /3 = - 4 and we will use for its numerical solution the device proposed in 
the previous section. The nodes ti and the weights Aj in Eq. (4) (with a = + 4 and 
p = - 4 as previously) are those used in the classical Lobatto-Jacobi quadrature rule 
and reported by Kopal [ 1 I]. On the other hand, the (n - 1) collocation points xk are 
the roots of the Jacobi polynomial Pi-“-‘, -8-1) (x) s Pk-3’29-1’2) (x) [8]. The 
computer programs already used in Ref. [8] were used once more for the deter- 
mination of the collocation points xk, the nodes ti and the weights A i. Their values 
for n = 7 are presented in Table I and we clearly observe the fact that the (n - 1) 

TABLE I 

Collocation Points xk, Nodes ti and Weights Ai for the Lobatto-Jacobi Method 
witha=+{,/?=-f andn=7 

xk t i Ai 

I .ooooo 0.86307 x IO-’ 
0.90839 

0.76954 0.11714 
0.58686 

0.3708 1 0.30985 
0.13393 

-0.11003 0.54225 
-0.34690 

-0.56291 0.76114 
-0.7455 1 

-0.88409 0.91638 
-0.97059 

-1.00000 0.48620 
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TABLE II 

Convergence of the Numerical Results tz (k 1) for the Solution g(t) of Eq. (I) with c1= + i and p = - 4 
at the Nodes 1= + 1” 

f(x): -1 -exp x -1 

k(t, x): 0 0 
1 7rft - x) 1 

-cot- -___ 
2.5 2.5 n(t - x) 

n b(-I)=g”(+l) & C-1) g’s+11 s’,l-1) &(+?I 

3 1 .QOOO 1.2666 4.923 1 1.4895 6.4238 
4 1.0000 1.2661 4.9285 1.5569 6.6645 
5 1 .oooo 1.2661 4.9285 1.5640 6.6881 
6 1 .oooo 1.2661 4.9285 L5648 6.6911 
I 1 .oooo 1.2661 4.9285 1.5650 6.6915 

’ Obtained by using the Lobatto-Jacobi method in its modified form proposed in this paper. 

collocation points xk alternate with the II nodes tj used in Eq. (4). We can also 
mention that for the numerical evaluation of the integrals in Eqs. (18) we used also a 
Lobatto-Jacobi quadrature rule with the same number of nodes, but for the weight 
function l/o(x). 

In Table II we present the numerical results obtained by the above-~esc~ib~~ 
method of numerical solution of Eq. (1) for three selections of the pair of f~~ct~o~s 
k(t, X) and f(x). We observe from the numerical results of Table II that they 
converge rapidly for increasing values of n. The “airfoil equation” (I), for f(x) ZG -1 
and k(t, x) = 0, possesses the closed-form solution g(t) = I [ 131 recovered from the 
numerical results of Table II. This is the problem of flow of an ideal fluid past a 
straight segment [ 131. Similarly, the third case considered in Table II corresponds to 
a periodic array of straight segments along a straight line with a ratio of the defied b 
of the array to the length a of the straight segments equal to b/a = 1.25. 

4. AN ALTERNATIVE TECHNIQUE 

Instead of using the technique proposed in Section 2 in the case when one 
collocation point is missing and the system of equations (5) is a system of (t2 - 1) 
equations with n unknowns (with K = 0) when a closed or, sometimes, a semi-closed 
quadrature rule of the form (4) is used, we can, alternatively, use as an additi~~~~ 
collocation point X, the end-point t = 1 or t = -1 of the integration interval I-1, I ] 
corresponding to the positive exponent (r or /I in Eqs. (3). This is clearly possible for 
this end-point and the integrals in Eq. (1) are regular integrals when using t 
point as a collocation point. Of course, it is not permissible to use the other end-foist 
of the integration interval as a collocation point since the first integral in Eq. (I) does 
not exist in this case. 
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The only disadvantage of this technique is that Eq. (4) is not appropriate anymore 
for the evaluation of the first integral in Eq. (1) since the weight function for this 
integral has now changed. A new quadrature formula, to replace (4) only for the first 
integral of Eq. (1) for the new weight function but with the same set of nodes ti, has 
to be constructed if the technique of this section is preferred. Yet, generally, this is 
not easily possible since such a formula includes the derivative of the integrand at the 
end-point under consideration, which is an additional unknown. This derivative has to 
be eliminated by interpolation, but this reduces considerably the accuracy of the 
quadrature rule. 
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